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Abstract

Two of the mostpopularimage quality measuesare the
root meansquae and signal-to-noiseratio. Unfortunately
thesemeasuesare simpletallies of pixel differenceandpro-
vide no informationaboutthe type of degradationpresent.
Althoughsimple and consequentlyprovide computational
benefitsthe RMSand SNRmeasues cannotmeaningfully
beappliedto imagescontainingtext or binaryimages. Pixel
tally measuesare alsounableto measue perceptuatlistor-
tion. Take the caseof two identicalimages,onetranslated
oneplaceto theright. Thesdamagesstill appearsimilar, but
an RMStypeerror will returna large difference

A new approad, basedn thefrequencydomain,to mea-
suring the quality of an image is presented.In particular
a frequencybasedapproadc allows for the measuemen-
t of distortionregardlessof translation. Resultdor the new
measue are alsopresented.

1. Introduction

Giventhattherearefew tasksassubjectve asthatof a
humanviewer comparingwo imageshow canimagequal-
ity be quantified?Two of the mostpopularerror measures
are the root meansquare(RMS) error, and the signal-to-
noiseratio (SNR). Both thesemeasuresre of little usein
determiningimagequality sincethey are merelytallies of
pixel difference.Two imagescanhave disparatepixel val-
uesat correspondingpointsyet still appeaiidentical. Con-
sidertwo imagesdiffering only by atranslation.Theseim-
ageshave no correspondencin termsof grey values,yet
still appeathe same.

However, althoughinherentlyflawed, therearetwo rea-
sonsthe RMS and SNR errorsaresstill in use. First, the
simplicity of the RMS error meansit hasa computational
adwantageover more complicatedapproachesand second

it providesa theoreticallysound,statisticalmeasureof the
meandifferencein pixel intensity The RMS is not useful
however, whenappliedto binaryimages,imagesinvolving
text, or translatedmages.

Anotherproblemof the RMS erroris thatit fails to pro-
vide anindicationasto thetypeof degradationn animage.
It isimportantto understandhedifferencebetweertwo im-
agesbeforemakingajudgmentasto the quality of theim-
age.A measuref animages “quality” shouldbeinvariant
to the translation whereaghe RMS erroris unableto dis-
tinguishbetweentranslationand degradation.Moreover, a
true measureof imagequality is onethat canseparatdhe
mary differentaspectsof distortion betweentwo images.
Theseaspectiéncludeimagetranslationyotation,compres-
sion,andenhancement.

Therearemary existingtechniquesor measuringmage
quality, but like the RMS, all have particularflaws, or limit-
eddomaing3]. To datethereis nosinglemeasurafimage
quality, dueto severalfactors. Thefirst is thatthe extreme
compleity of the humanvisual systemsuggestshata sim-
ple method,or one giving a single numberresult are not
useful. Secondly validationof animagequality measure
canonly be performedby psychophysicatests,involving
humanviewersrankingimages,and comparingthe results
with thoseof theimagecomparisonrmeasureUnfortunately
thisis extremelydifficult.

An extensive amountof work relatingto imagemanip-
ulation routineshas beenpublished. Often thesearticles
compareroutinesin terms of the quality of imagespro-
duced. However, it is impossibleto draw any parallelsbe-
tweentwo similar routineswithout a reliable measureof
image quality. This is evidentin the designof compres-
sion algorithms,for which the needto measurehe quali-
ty of a reconstructedmageis essentiain determiningthe
compressioralgorithm’s performance.In factmary com-
pressioralgorithms’have their parametersetto minimise
RMS error[7].

The following presentsa new approachto imagecom-



parisonemploying phaseinformation. The importanceof

phaseinformationin animageis highlightedby an experi-

mentperformedby OppenheimandLim [6] involving con-
structinga syntheticimage from two seperatémages,by

extractingthe phaseinformationfrom one andthe magni-
tudeinformationfrom theother Theresultingimageclearly
correspondso theimagefrom which thephaseanformation
wastaken[6]. Fromthisresultit is evidentthatphasés im-

portantin animage,and consequentiya measurebasedon

phasemay be usedto overcomesomeof theflaws inherent
in RMS type errormeasures.

The new phasebasedmetric is a measureof perceptu-
al distortion[3], in thatit producesa measureof relative
difference. This resultis intuitive as the distortion mea-
sureis basedon a comparisonof the phasebetweentwo
images,not on a compressiomatio or simpletally of pixel
difference.Consequentlydifferencesanbe weighted.For
example,alargetranslationis not measuredhsa large dis-
tortion. Thusrectifying anotherf the problemsnherentto
theRMS.

The new measurepresentedn this papercalculatesa
phasedifferencebetweenfrequeny information extracted
from eachimage. The phasedifferenceis thenusedto cal-
culatea measuref distortionandan estimateof phasedis-
placementTheestimateghasalisplacemenis usedo cal-
culateameasuref translation A displacemenis measured
by observinghe offsetbetweerphaseateachpoint. A con-
stantoffsetgreaterthanzeroimplies a translationbetween
images.Distortionis measuredy calculatingthe standard
andabsolutedeviationsof the phasedifference.Distortion
canbe calculatedrrespectve of a translationbetweenm-
agessincethephasdifferencebetweeridenticalimagess
constantithe standarddeviation will be zero,or nearzero,
with or withouta displacement.

2. Frequency Analysis

Phasedata are extractedfrom an imagevia frequengy
analysis.A commonapproacho frequeng analysisis the
Fourier transform([5]. Although providing the frequencies
presentin a signal,it unfortunatelydoesnot tell us where
eachfrequeng occurs,and consequenthyit is impossible
to usethe resultof the Fourier transformto comparetwo
distinctpointsin two separatémages.

Basedon work by Morlet et. al [4], the extraction of
phaseand amplitudeinformation can be performedusing
waveletsin quadratureA waveletapproachs emplojedas
it allowsthe extractionof phasdocalisedin bothfrequeny
andspace.

Wavelet analysisinvolves creatinga bank of filters in
guadrature. The approachtaken here, basedon work by
Kovesi[1, 2], emplgys a bankof geometricallyscaledLog
Gabor wavelets. Thesefilters have a Gaussiantransfer

function when viewed on a logarithmic scale. Log Ga-
bor filters areemployedbecausehey offer agoodcompro-
mise betweenspatial localisationand frequeng localisa-
tion. Log Gaboffiltersarealsopreferrecbverotherwavelet-
s sincethey allow arbitrarily large bandwidthfilters to be
constructedvhile still maintainingazeroDC componentn
theeven-symmetridilter. A zeroDC componentannotbe
maintainedn Gaborfunctionsoveroneoctave

The frequeng a filter targetsdepend®on the frequeny
of the sine/cosinewave and the bandwidth/localisationn
spaceis controlledby the width of the Gaussiarervelope.
Using filters in quadratureenablesthe calculationof am-
plitude andphasedatafor a particularscale/frequencat a
givenspatiallocation.

Eachpair of evenandoddsymmetricfiltersis createdy
geometricallyrescalingherespectie originalwavelet. The
bankof filters is thencornvolvedwith theimageto generate
frequeng information.

2.1. Calculating Phase and Amplitude In-
formation

Corvolution of a signalwith evenandodd comple val-
uedLog Gaborfilters resultsin anarrayof complex valued
numbers,at eachpoint in the signal, of the form a + b.
We canthink of a astheresultof corvolution betweenthe
imageandevenfilter, andb asthe resultof convolution be-
tweenthe imageand odd filter. From this resultlocalised

phasenformationd,,, for afilter of scalen, is calculatedoy
0, = atanZb,a), (1)

andlocalisedamplitudeinformation A4,, is calculatedby

Va2 +b2. )

Simply put, wavelet frequeny analysisdecomposes
signalinto a seriesof basisfunctionsrepresentingachfre-
gueng recorded.At eachpoint we have phaseandampli-
tudepairs,for eachscaleof filter.

A, =

2.2. Calculating Phase Angle Difference

For purpose®f comparisona differencemustbe calcu-
lated betweenthe phaseangledata. This differencemust
accountfor the wrap aroundproblem. The wrap around
problemis causedby the fact that the differencebetween
359° and1° is 2°, not 358° ascalculatedby a simplesub-
traction.Hence givenaphaseangled;, andphaseangled,,
a phasedifferenceAf canbe calculatedbasedon the sine
andcosinedifferenceof anglelaws, as

cos(Af) = cos(f;)cos(f2) + sin(6;) sin(fs),
sin(Af8) = cos(61)sin(f2) + cos(#2) sin(61),
Af = atanZsin(A#8), cos(AH)).



Theresultingphasealifferencecannow beusedo determine
thedisplacemenor distortionasrequired.

3. Displacement

By convertingthe phasedifferenceat differentscaleso
anequialentdisplacementt is possibleto relatethe phase
differencesat differentscaleso a usefulmeasuref image
translation.GivenaphaselifferenceAd ata point, anesti-
mateof thetranslationbetweerimagesatthatpointis given
by the phasadisplacemeniA®, andis calculatedy

Ad
o X ®3)
where), is thewavelengthof thefilter atscales.

A displacemenis calculatedor eachpointin thesignal,
for eachscaleof filter. If thetwo signalsbeingcomparedire
identical, bar translation,then the measuredlisplacement
shouldbe consistenacrossall points.

Ad =

4. Distortion

Calculatingthe distortion of an image using phasein-
formationis basedon the premisethat the localisedesti-
mateddisplacemenat all scalesbetweertwo identicalim-
ageswill be constantyegardlessof translation. Moreover,
if a standarddeviation is calculatedover the displacemen-
t estimatesthe deviation from the meanonly increasesf
thereareactualdifferencedetweenimages.Basedon this
assumptiontwo methodsare proposedor the estimation
of distortion: a standarddeviation and an absolutedevia-
tion [1]. An absolutedeviationis implementedalongwith a
standardieviation sincetakingthe absolutevalueof differ-
enceratherthanthe squareroot of a squaredlifferencecan
be more sensitve to minor changes.This increasedsensi-
tivity is desirablevhenmeasuringslight distortions.

The standarddeviation o, andthe absolutedeviation a,
arecalculatedasfollows:

N [
_ (AD; — AD)?
o = Z ~ @
i N ’
whereN is the numberof pixelsin theimage,A®; is the
phasedisplacementalculatedat pixel ¢, and A® is the
meanphaselisplacementalue.

4.1. Distortion Results

This section presentsresults for both the new phase
basedmeasureandthe RMS error. The resultspresented

consistof anoriginal referencémageandthereferenceém-
agecompressedndreconstructedThisis donefor increas-
ing levels of compressionandtranslationsof zeroand six
pixelsbetweerimages Figuresl, 2,and3 displaytheorigi-
nal,55% compressedand95% compresseémagesespec-
tively. Compressionwas perfromedwith the JPEGIlossy
imagecompressiorstandard.

Figure 1. Original test image.

Figure 2. Test image compressed to 55%.

Figure 4 presentghe measuredlistortion as calculated
for thenew phasébasedneasuravhenappliedto theimage
in Figure 1 andits respectie compressedersions. This
is a typical resultfor generalimages.Note thatevenfor a
translationof six pixelsthe effect of the translationon the
measuredlistortionis minimal.

Figure 5 illustratesthe resultsfor the RMS error when
appliedto the sametestimageasin Figure4. The effect
of translationon the RMS is clearly evident. In particulay
notethatthe RMS errordecreaseascompressiolincreases
whentheimageis translatedNotealsotheextremeincrease
in measuredlistortionfor ary translationbetweenimages.
Figure5 is typical of theresultsproducedy theRMS error.



Figure 3. Test image compressed to 95%.
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Figure 4. Measured distortion for the test im-
age, with a displacement of 0 and 6 pixels re-
spectively.

5. Trandation Results

Beyondtranslationf 15 pixels,the phasebasedanaly-
sistechniquds only usefulasarelative metric: largetrans-
lationscausemeasuredlistortionsto increaseconsiderably
However, asillustratedin Figure 6 and Figure7, the esti-
mateof the translationis accurateto two pixels. The grey
barsin Figures6 and7 indicateactualtranslation.Theblack
barsindicate measuredranslation. Note the accuray de-
creasesvith eachincreasen translation.

6. Validation

Thelack of aformalvalidationmakesthetaskof assess-
ing the performanceof the new phasebasedmeasureex-
tremelydifficult. It wasdecidedhatacorrectresultwasone
suchthatanimageof highercompressioris givena high-
er measuredlistortion. Similarly animagethatis modified
fromtheoriginalis alsodeemedo have beendistorted.The
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Figure 5. The distortion returned by the RMS
error when applied to the test image for dis-
placements of 0 and 6 pixels respectively.
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Figure 6. Measured displacement for the test
image compared to itself. Actual displace-
ment is indicated by the grey bar.

criteriafor performanceating hasthe perhapaundesirable
effectthata sharpenedmnage,deblurredmage,or ary sim-
ilarly enhancedmage, is cateyorizedas distorted. Given
thatthe new measures arelative one,this resultis of little
importanceandanimage,evenif appearingetterthanthe
original, is still distortedrelative to the original. The im-
portantfactoris whetherthe imagehasbeendistorted,and
type of distortion, not whetherthe imageis more aestheti-
cally pleasing.

The proposedneasurés arelative metricandit cannot
beusedasanabsolutenumber However, asindicatedby the
problemswith the RMS and SNR measuresmagequality
cannotbe judgedon a single number Rather a rangeof
imageattributesmustbe considereda3].

7. Conclusion

Comparingimagesis a highly subjectve task,andone
thatis especiallyhardto shav correct. A new imagecom-
parisonmetric basedon using frequeng information has
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Figure 7. Measured displacement for the test
image compared with the 85% compressed
version. Actual displacement is indicated by
the grey bar.

beenpresente@ndshonn to alleviate someof theproblem-
sinherentwith theRMS andSNRerrors.

Imagequality is extremely difficult to measure.More-
over, to datethereis no satishctorymeasurepr definition,
of imagequality. Thus makingthe task of validatingthe
phasébasedneasurextremelydifficult.

The new measureresenteds basedon phaseinforma-
tion andthis is clearly importantto the humanvisual sys-
tem. In particular thenew measurés ableto separatérans-
lation from distortion. However, morework is requiredin
understandinghe effect of thefilter shapeon thereliability
of frequeng informationextracted.
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