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Abstract—Non-photographic images having a high dynamic represent the formation of an image from light reflecting off
range, such as aeromagnetic images, are difficult to presemt  objects. As such they are non-negative and have specifieimag
a manner that facilitates interpretation. Standard photogaphic statistics[[2], [3]. Photographic HDR tone mapping aldarit

high dynamic range (HDR) algorithms may be unsuitable, or h b ialised for th . dd tensivel
inapplicable to such data. We present a method that compress ave been specialised for tnese images and draw extensively

the dynamic range of an image while preserving local feature  ON psychophysical research into the response of the hungan ey
It makes no assumptions about the formation of the image, the to light [4]. Ultimately their aim is to make an image ‘look
feature types it contains, or its range of values. Thus, urke good'.

algorithms designed for photographic images, this algorttim can

be applied to a wide range of scientific images. The method For non-photographic HDR scientific images we are not so
is based on extracting local phase and amplitude values ass concerned with making an image ‘look good'. Instead our

the image using monogenic filters. The dynamic range of the . =~ . . - .
image can then be reduced by applying a range reducing funaii objective is to allow all features of interest to be revealgith

to the amplitude values, for example taking the logarithm, ad ~Maximum fidelity. Artifacts arising from the tone mappingpr
then reconstructing the image using the original phase vales. cess must also be minimised because our ability to recognise
An important attribute of this approach is that the local phase the presence of artifacts may be greatly limited. What may,
|nformat|.on.|s presgrved, th[s is important for the human visual or may not, be ‘normal’ in a non-photographic image will
system in interpreting the image. The result is an image that . . .- .
retains the fidelity of its features within a greatly reduced not be necessarily obvious. In addition we do no_t necegsaril
dynamic range. An additional advantage of the method is that have a good sense of the scale of features of interest. Thus
the range of spatial frequencies that are used to reconstrudhe it is important that any tone mapping algorithm allows user

infwagelca_n be chosen via high-pass filtering to control the st control over the scale of features that are enhanced.
or analysis.

Scientific images may have image statistics and featurestype
|. INTRODUCTION that are very different from photographic images. The psece

by which scientific images may be formed can be very varied.
Increasingly images are being captured, or created, withFar example contrast in magnetic resonance images arise fro
high dynamic range that far exceeds what can be display@tons returning to equilibrium states at varying rates in
on conventional devices. Much of the recent interest in highfferent body tissues. Contrast in CT images arise from dif
dynamic range images and the problem of tone mapping wigging X-ray attenuations. Geophysical aeromagnetic #sag
stimulated by the work of Debevec and Mallk [1] who firstepresent the magnetic susceptibility of rocks in the earth
presented a practical algorithm that allowed high dynaminlike photographic images the range of values in a scientifi
range radiance maps to be recovered from multiple imagg¥ge may cross the origin, or the range of values may lie
taken with conventional cameras. Prior to this the problegnconsiderable distance away from the origin. For example
of high dynamic range images were encountered in compu@&iromagnetic images may contain values ranging from around
graphics when realistic, physics based, illumination meth 30,000nT (nanotesla) to 70,000nT, where an anomaly as small
were developed for image rendering in the 1980s. In doigg 10nT may be of interest. Thus it may be quite inappropriate
this the computer graphics community rediscovered the saifeapply tone mapping techniques developed for photogeaphi
problems that photographers encounter, for example, ingry images to scientific images, assuming that the algorithm can
to render an image of a room with a window opening out t@ven accept the range of data that is in the input image.

a bright outdoor scene. : : .
9 This paper presents a new tone mapping algorithm that works

This paper is concerned with the rendering of high dynamiic the frequency domain. It makes no assumptions about the
range (HDR) scientific images. The aims are potentially difermation of the image or its range of values. It ensures the
ferent from that in rendering high dynamic range photogi@pHidelity of features are maintained by preserving the local

images. Photographic HDR maps may contain radiance valydmse of features. The scale of the features that are high-
corresponding to moonlight ranging up to direct sunlightey lighted by the algorithm are controlled via high-pass fitigr



Traditionally scale has been considered in terms of lowspaamplitude spectrum of the illumination component is redluce
filtering however under this approach the locations of feztu and, optionally, the reflectance component is amplified fgefo
can vary with scale, this is not the case under high-pade image is reconstructed. Ashikhmin[15] attempts tocdbuil
filtering [5]. Under high-pass filtering the relative magmies a simple functional model of the human visual system. Local
of features can vary but not their locations. adaptation levels are computed across an image to which a
tone mapping function is applied. Image detail information
is then reapplied to the adapted image. Ashikhmin notes that
some care is needed to avoid introducing false featuresein th
aptation image. Bilateral filteris [[16] are used by Duramdi a
rsey [17] as edge-preserving filters to decompose an image
a low frequency base layer and a detail layer. The base
er then has its contrast reduced and the detail layekeis th
recombined. Note that this approach implicitly assumes tha
that only step edges are the features of interest that shoguld

Histogram modification: preserved in the smoothing process.
Ward et al. [6] developed a method based on modifying a

luminance histogram. Rather than trying to achieve a umiforSradient attenuation:

histogram as is done with histogram equalisation they éevi-ghe gradi_ent domain approac_h of Eattal et al_[18] attenua_ltes
a_histogramadjustment algorithm that limits the maximum the magnitudes of large gradients in the luminance gradient

local contrast that would otherwise be obtained via histogr 11€/d and then reconstructs the low dynamic range image by

equalisation. This prevents the formation of areas haviHbIegr?ting the.modified gradient field by SO'V‘”Q a Poissor_1
unnaturally high local contrast. The overall aim is to prese equation. Gradients at all scales are computed via a Gaussia

perceived contrast. Qiu et al.|[7] cast the problem of findinrr}yramld and the gradlent attenuation coefﬂm_ents are prop-
an appropriate histogram mapping function as an optimieatiagated through to the finest scale to determine the overall

problem. They devise an objective function that seeks gsadient attenuation function. Mantiuk et &l. [19] extehe t
optimally divide the image histogram into local sectionatth 9radient approach by imposing constraints on the contrasts

are either scaled linearly, or histogram equalised. over the whole image. This avoids the possibility of revegsi
polarity of contrast in the gradient attenuation process.

Il. PRIOR WORK

As mentioned earlier, work on tone mapping has primarizd
been concerned with HDR photographic images and rendert
of computer graphics scenes. The techniques can be roqué(
divided in a number of broad categories though there can
considerable overlap in the methods.

Models of visual adaptation:

Early work includes that of Ferwerda et all [8] who develop
a model of visual adaptation based on psychophysical d
Light and dark areas of an image are modified accordi
to a model of local adaptation. Reinhard et al. [9] develd
a local dodging-and-burning operator where the scale of t

required dodging-and-burning is determined locally. Keayk st adjustments that are applied throughout the dataerang

et al. [10] build a model based on lightness perception. T lised d | bi inted withadiff
image is decomposed into frameworks/regions of comm ¢ equalised data, _perceptua lases assoclated wi
olours, and non-uniform perceptual contrasts betweesucs|

illumination. An anchor that provides a mapping betweel
luminance and the perceived grey shade is computed for ecjﬂzﬁhe colour map({20].

framework. From this an appropriate tone mapping for ea¢tor aeromagnetic data the Automatic Gain Control algorithm
framework is derived. Johnson and Fairchild/[11]./[12] dege developed by Rajagopalan [21], ]22] is sometimes used. This
an image appearance model, iCAM, that models chromagigorithm attempts to generate an image where the waveforms
and luminance adaptation processes and also models laggle constant amplitude. Within a local window, that is mibve
contrast/surround effects. This was one of the best rankggtoss the image, the input signal amplitude is estimatad, s
algorithms in Ledda et al.’s 2005 evaluation of tone mappinga the root mean square, and a gain value applied to nornalis
algorithms [13]. this amplitude. A difficulty with this algorithm is that the
signal can be over-normalised and perception of the overall
vgriations in the signal can be lost. However, the algorithm
’goes allow the scale over which the signal normalisation is
ﬁlé)plied to be controlled by varying the size of the analysis

elélon-photographic algorithms:

5Qr geological and geophysical data, for which the algarith
ﬁﬁ veloped in this paper is directed, high dynamic range é@nag
e often dealt with via histogram equalisation. The egedli
age is then typically displayed via a rainbow colour map.
This can lead to perceptual distortions due to the varying co

Decomposition into layers:

The approach of decomposing an image into two layers
base layer of primarily low frequency information, and
detail layer is a common approach. The magnitude of t
base layer is reduced in some way before being recombin\g@dow'

with the detail layer. This approach corresponds to a simpl@e tilt derivative given by
functional model of visual adaptation. An early example is (

homomorphic filtering[[14] where it is assumed that the low tan~!
and high frequency components of an image correspond to
its illumination and reflectance components respectivEiye is another normalised representation of magnetic data that

vertical component of the signal gradien
| horizontal component of the signal gradient



can be used [23]. While the tilt derivative has some useftiiree outputs] x f, I x hyf and I * hs f, wherex denotes
properties it too suffers from the problem of over-normiatis convolution.

of the data. If some overloading of notation can be permitted, for brgvit

these convolution results will also be referred to fa%; f
I1l. PHASE PRESERVINGTONE MAPPING and ho f. Figure[1 illustrates the process. At a point in the
image the three convolution outputs can be thought of as
In general, tone mapping algorithms devised for photograptorming a vector in 3-space. The output from convolutiorhwit
images have been developed on the basis of statistics abhatthe band-pass filtef corresponds to the vertical coordinate,
images, feature types found in natural images, and modelsaofd the convolutions with the Reisz transform filtéssf and
the human visual system. The algorithms may require imagief specify the two horizontal coordinates. The vertical axis
segmentation and/or decomposition of the image into bade axan be thought of the real component of the signal and the
detail layers. Often there are many parameters that have totWwo horizontal axes represent the two complex valued, phase
set. shifted versions of the signal in the two orthogonal imagies ax

. . . directions.
For non-photographic images we want to avoid making par-

ticular assumptions about the image type and the featuags thhe local amplitude at image locatigm, y) is given by
may be present. Even in natural images most feature types B 3 3 3
are not simple step edges [24]. We also want to avoid the (@) = \/f(z’y) +haf(@,y)* + haf(z,4)* -
need for segmentation or decomposition into base and def#lile local phase is given by

layers because such operations may have no real meaning with B 5 5
respect to the image. The number of parameters that need to beqj(z’ y) = atan2(f(z,y), \/hlf(x’ y)* +haf(2,9)?)
set should be minimised, and where they do exist they showlad orientation given by

h | hysical ing.
ave a clear physical meaning 6(x.y) = atan2(ho f(z.y). b1 f(.9))

The primary assumption that is made in the new algorithm is
that the local phase values of the image must be preserved
in the tone mapped output. Phase is important to the human
visual system. Oppenheim and Litn_[25] show that the am-
plitude spectrum of an image can be modified considerably,
even swapped with that from another image, and the features
from the original image will still be seen clearly as long as
the phase information is preserved.

The approach adopted is to decompose the image into its
local phase and amplitude values. The amplitude values are
attenuated via some function and the image then reconstruct
using the original phase values and the attenuated amglitud
values. A point to emphasise here is that kbeal phase and
amplitude values are used and manipulated, not the gloleal on
that you would obtain via a Fourier transform.

To obtain the local phase and amplitude monogenic filterk [26
[27] are used. Monogenic filters are formed by combining a
radial band-pass or high-pass filter with its Riesz tramsfor
The Riesz transform forms a 2D equivalent of the Hilbert
transform. It is made up of two components. If we define
two filters in the 2D frequency domaim, , us

) Uy ) Us Fig. 1. Obtaining phase and amplitude from the outputs ofagenic filters.

H, = zﬁ Hy = Zﬁ The band-pass filter is defined by and hif and ho f are the two Reisz

VUl +uy Vuy + us transform filters.A is the local amplitude¢ the local phase, ané the local
orientation.

then the spatial representation of the ved®br= (H;, Hs)

defines the convolution kernel of the Reisz transform. TheBgynamic range reduction of the image is simply achieved by
two filters represent quadrature phase shifting operationsapplying a range reducing function to the amplitude and then
the two orthogonal directions of the image. To obtain locaéconstructing using the original phase. Referring to Fagl
phase and amplitude information the imade,s convolved this can be thought of reducing the length of the vector in
with the band-pass or high-pass filt¢rand the two Reisz 3-space while maintaining its direction, and then projegit
transform filtered versions of, hy f andhs f. This provides back onto the vertical, real, axis. In the work presentec her



the amplitude range reduction has been achieved using the V. RESULTS

logarithm of the amplitudelog(A + 1) or, in some cases, a

nested logarithml¢g(log(A + 1) 4 1)) of the amplitude. Note Figure[2 shows a raw aeromagnetic image of the Yilgarn area

that1 is added to the amplitude values to avoid reversal of tlie Western Australia along with its histogram. The raw data

signal for values less than 1. values range from about 50,000nT to about 70,000nT. Note
how the histogram count values range over several orders of

The reconstructed, tone mapped image image vallies,y) magnitude. In this figure the image values have been linearly

are given by scaled and shifted to a range of 0-255. Figlite 3 shows a
. histogram equalised version of the image. Figures 41to 6
T(z,y) =log(A(z,y) + 1).sin(é(z, y)) show the results of the dynamic range compression algorithm

with high-pass cutoff frequencies of 1/2000, 1/1000 an®Q/2
respectively. The image size is 2492 x 2847 thus at the
smallest cutoff frequency almost all the spatial frequegién

the image are fully represented. Note the progressive liegea

_ ) ) ~of fine scale features as the cutoff frequency is increased.
Apart from the choice of amplitude range reduction functiofipe jnevitable halo artifacts also increase as cutoff feemy

the main parameter in the algorithm is the choice of filfer s jncreased. It is important to use a low order butterworth
It must be a high-pass or band-pass filter because the Rejgfh-pass filter to minimise these effects. Interactivetgrs
transform, like the Hilbert transform, is not defined for a Dcﬁing through image scales via an image blender can also

signal. be useful in helping distinguish any confusing halo artfac

In this work we have found the use of high-pass filtergom genuine features. For comparison the Yilgarn data was

most useful. For fine details of the image to be preserv@ﬁ0 rendered using using the Mac OSX Preview application,
W ich can render HDR files, this is shown in Figure 7.

it is important to retain all the high frequency componen found th fsetii he i | hat th

of the signal. Progressively attenuating the low frequené: was ounl that o (s)ettlnght ehgagelo\ia ues so t.atdt €

components of the signal achieves two things, the scale frimum value was 0, rather thah x was required
tps obtain a reasonable result with the Preview application.

the image is varied, and the dynamic range of the image H h It obtained using MATLAB’s DR
further reduced. As low frequency components are removgwure[8 Shows the result 0 talne_ using S
nemap function [28]. This function is based on Ward’s

small scale features that would otherwise be swamped by limited hi lisati lqorithim 161t
broader scale features are revealed. Unlike the situaﬁonCTntraSt imited histogram equalisation algorittim [6].itNer
|

low pass filtering was to be used the locations of these sm% these ?Igerbnate re_nde{;]ngi_s?]ow the flr;eﬁsftructures m?ttﬁ
scale features remains stable under different levels &f-pass € reveaed by varying the high-pass cutolt frequency ot the

filtering, all that changes is their magnitude relative tatfees proposed algorithm.

at broader scales. Clearly this is a desirable attributengf awhile it is not suggested that the proposed algorithm isesuit
analysis that varies over scale [5]. In addition, as meetibnfor photographic images it can be used on them. Figlre 9 is
earlier, the other thing achieved by high-pass filteringhistt an image with strong shadows and Figluré 10 shows the output
by removing low frequency components of the signal, whic$f the algorithm using a high-pass cutoff frequency of 1/200
are typically large, the dynamic range of the image is furthehe result may not be as aesthetically pleasing as what might
reduced. be obtained using an algorithm optimised for photographic

D . images, but is acceptable.
For scientific images the scale of interest may be unknown 9 P

beforehand. Indeed, the image may contain features okstterOut of interest the algorithm was also tested on De-
over a variety of unknown scales, as is typically the cash wibevec’s widely used radiance data of the Stanford Memorial
geophysical images. We have found it useful to generateCaurch [29]. For this image it was found that using a nested
sequence of about ten images with the high-pass filter cuttdffarithmic attenuation of the local amplitudes of the aautie
frequency increasing geometrically. The smallest cutoditisl values was most appropriate. In addition, the logarithmhef t
frequency in the series might be'w, wherew is the image radiance data was used as an approximation of brightness and
size, and the largest might be, s&/w. These images used as input to the the dynamic range compression algarithm
can be viewed individually, however, what we have fountihe final images were also adjusted using a gamma value of
most effective is to use an image blender that allows one @b. For comparison a rendering obtained using the Mac OSX
interactively blend across the whole sequence of images. TRreview application is also shown. No detailed comparison
allows one to simulate a continuum of processing scales. Tten, or should, be made as with any HDR rendering package
intermediate blends of the images act as an approximationghiere are many parameters that can be adjusted. The interest
the computational result that would have been obtainedtad thg thing to note is that reasonable results can be obtained
image been processed at that exact intermediate scaled Raing the proposed algorithm which primarily has only one
interactive exploration of the image over multiple scalas c parameter, the cutoff frequency of the high-pass filter. The
be extremely instructive. algorithm’s primary aim is to make features visible, not to

IV. SCALE VARIATION AND SIGNAL ATTENUATION VIA
HIGH-PASS FILTERING



make them attractive. The results have been deliberatelyrsh
in grey scale to allow the tone mapping to be seen as distinct
from colour reproduction issues which are not the topic &f th

paper.
VI. CONCLUSION

This paper presents a new tone mapping algorithm designed
for non-photographic images. The algorithm works in the

frequency domain and ensures the fidelity of features are
maintained by preserving the local phase values within the
image data. It makes no assumptions about the formation
of the image, the feature types it contains, or its range of
values. Thus, unlike algorithms designed for photographic
images, this algorithm can be applied to a wide range of
scientific images. No image segmentation, or decomposition
into base and detail layers is needed. The algorithm only
has one major parameter, the cutoff frequency of the high-
pass filter used. This parameter controls the scale of the 10
features that are highlighted by the algorithm. Prepanatioa

sequence of images with geometrically scaled high-pasdfcut
values allows exploration of the features over a wide rarfge o i
scales within the image. MATLAB code is available for those
wishing to replicate the results presented héré [30].
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Fig. 2. Raw aeromagnetic data of the Yilgarn and logarithplat of its
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Fig. 3. Histogram equalised aeromagnetic image of the iilga



Fig. 4. Rendering of the Yilgarn aeromagnetic data usingptioposed tone
mapping algorithm. High-pass cutoff frequency 1/2000.

Fig. 5. Rendering of the Yilgarn aeromagnetic data usingptioposed tone
mapping algorithm. High-pass cutoff frequency 1/1000.

Fig. 6. Rendering of the Yilgarn aeromagnetic data usingptioposed tone
mapping algorithm. High-pass cutoff frequency 1/200.

Fig. 7. Yilgarn HDR data rendered with Mac OSX Preview apilan.

Fig. 8. Yilgarn data rendered with MATLAB's HDRonemap function.

REFERENCES

[1] P. E. Debevec and J. Malik, “Recovering high dynamic engdiance
maps from photographs,” iBlIGGRAPH 97, 1997.

[2] D. J. Field, “Relations between the statistics of ndtimesages and the
response properties of cortical cellggurnal of The Optical Society of
America A, vol. 4, no. 12, pp. 2379-2394, December 1987.

[8] — “What the statistics of natural images tell us aboisual coding,”
in SPIE 1077, 1989, pp. 269-276, los Angeles, California.

[4] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, W. Hgidriand
K. Myszkowski, High Dynamic Range Imaging Acquisition, Display,
and Image-Based Lighting. Morgan Kaufmann, 2010.

[5] P. Kovesi, “Image features from phase congruentfglere: A Journal
of Computer Vision Research, vol. 1, no. 3, 1999.

[6] G. J. Ward, H. Rushmeier, and C. Piatko, “A visibility rohing tone
reproduction operator for high dynamic range scenHsEE Transac-
tions on Visualization and Computer Graphics, vol. 3, no. 4, December
1997.

[7] G. Qiu, J. Guan, J. Duan, and M. Chen, “Tone mapping for HDRge
using optimization - a new closed form solution,” fimoc. |CPR 2006,
18th International Conference on Pattern Recognition, vol. 1, 2006, pp.
996—999.



Fig. 10. Image rendered with the proposed tone mapping itiigar High-
pass cutoff frequency 1/200.

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

Fig. 9. Image with strong shadows.

Fig. 11. Stanford Memorial Church rendered with the proddsee mapping
algorithm. High-pass cutoff frequency 1/100. With thisaffifrequency halo
effects are quite evident. Radiance data from Debévec [29].

J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. @vegg, “A
model of visual adaptation for realistic image synthesis 3 GGRAPH
96, 1996.

E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Bhaiphic tone
reproduction for digital images,” ilACM Transactions on Graphics,
21(3), July 2002 (Proceedings of SIGGRAPH 2002), 2002.

G. Krawczyk, K. Myszkowski, and H.-P. Seidel, “Compiitaal model
of lightness perception in high dynamic range imaging,” Houman
Vision and Electronic Imaging XI, IS& T/SPIE’s 18th Annual Symposium

on Electronic Imaging (2006), B. E. Rogowitz, T. N. Pappas, and S. J.
Daly, Eds., 2006.

G. Johnson and M. Fairchild, “Rendering HDR images,Pioceedings
of IS& T/SD 11th Color Imaging Conference, 2003, pp. 36—41.

J. Kuang, G. ohnson, and M. Fairchild, “iCAMO6:a refingdage
appearance model for HDR image renderiripgirnal of Visual Commu-
nication and Image Representation, vol. 18, no. 5, pp. 406-414, 2007.

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzenaltition of
tone mapping operators using a high dynamic range dispiayXCM
SIGGRAPH 2005. ACM, New York, 2005, pp. 640-648.

J. T. G. Stockham, “Image processing in the context oisaal model,”
Proceedings of the IEEE, vol. 60, pp. 828-842, 1972.

M. Ashikhmin, “A tone mapping algorithm for high consteimages,” in  Fig. 12. Stanford Memorial Church rendered with the progdeee mapping
Eurographics Workshop on Rendering, P. Debevec and S. Gibson, Eds. algorithm. High-pass cutoff frequency 1/200.
2002, pp. 1-11.



Fig. 13. Stanford Memorial Church rendered using the Mac P3view
application.

[16] C. Tomasi and R. Manduchi, “Bilateral filtering for grand color

images,” inProc. |IEEE Int. Conf. on Computer Vision, 1998, pp. 836—

846.

[17] F. Durand and J. Dorsey, “Fast bilateral filtering foe tthisplay of high-
dynamic-range images,” iIACM SSGGRAPH 2002, 2002.

(18]

[29]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

R. F. Dani, Lischinski, and M. Werman, “Gradient domhigh dynamic
range compression,” iAnCM SIGGRAPH 2002, 2002.

R. Mantiuk, K. Myszkowski, and H.-P. Seidel, “A percapt framework
for contrast processing of high dynamic range imageé€M Transac-
tions on Applied Perception 3, 3, pp. 286-308, 2006.

D. Borland and R. M. T. Il, “Rainbow color map (still) ceiu-
ered harmful,”IEEE Computer Graphics and Applications, pp. 14-17,
March/April 2007.

S. Rajagopalan, “The use of ‘automatic gain controldisplay vertical
magnetic gradient data,” i6th ASEG Conference, 1987, pp. 166-169.

S. Rajagopalan and P. Milligan, “Image enhancementenbrmagnetic
data using automatic gain controExploration Geophysics, no. 25, pp.
173-178, 1995.

A. Salem, S. Williams, D. Fairhead, R. Smith, and D. Rattmterpre-
tation of magnetic data using tilt-angle derivativeGgophysics, vol. 73,
no. 1, pp. 1-10, 2008.

P. Kovesi, “Edges are not just steps,”Bnoceedings of ACCV2002 The
Fifth Asian Conference on Computer Vision, 2002, pp. 822-827.

A. V. Oppenheim and J. S. Lim, “The importance of phassignals,”
in Proceedings of The IEEE 69, 1981, pp. 529-541.

M. Felsberg and G. Sommer, “A new extension of lineanalgrocess-
ing for estimating local properties and detecting featliras DAGM
Symposium, Kiel, 2000.

——, “The monogenic signal '/EEE Transactions on Sgnal Processing,
vol. 49, no. 12, pp. 3136-3144, December 2001.

“MathWorks MATLAB Image Processing Tool-
box function t onemap.” [Online]. Available:
http://www.mathworks.com.au/help/toolbox/imagestmfemap.html

P. Debevec, “Recovering high dynamic
diance maps from photographs.” [Online].
http://www.pauldebevec.com/Research/HDR/#radianpsma

P. Kovesi, “MATLAB and Octave functions
puter vision and image processing.” [Online].
http://www.csse.uwa.edu.aupk/research/matlabfns/

range ra-
Available:

for com-
Available:


http://www.mathworks.com.au/help/toolbox/images/ref/tonemap.html
http://www.pauldebevec.com/Research/HDR/#radiancemaps
http://www.csse.uwa.edu.au/~pk/research/matlabfns/

	Introduction
	Prior Work
	Phase Preserving Tone Mapping
	Scale variation and signal attenuation via high-pass filtering
	Results
	Conclusion
	References

