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Abstract—This paper shows that most surveillance cameras
fall well short of providing sufficient image quality, in both
spatial resolution and colour reproduction, for the reliable
identification of faces. In addition, the low resolution of
surveillance images means that when compression is applied
the MPEG/JPEG DCT block size can be such that the spatial
frequencies most important for face recognition are corrupted.
Making things even worse, the compression process heavily
quantizes colour information disrupting the use of pigmenta-
tion information to recognize faces. Indeed, the term ‘security
camera’ is probably misplaced. Many surveillance cameras are
legally blind, or nearly so.
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I. INTRODUCTION

This paper arises from many frustrating years attempting
to assist police with the enhancement of numerous surveil-
lance video images. Almost invariably I was unable to to do
anything useful. While it is fairly straightforward to make
a poor quality video image look nicer, it is exceedingly
difficult to enhance an image to the point that you are able
to see something that you could not see before. Occasionally
some small successes were achieved [16].

It was somewhat belatedly that I realized that the quality
of surveillance video was much worse than I had realized,
and any attempts at enhancement probably futile. This point
was made clear to me when I was approached to enhance
the image shown in Figure 1. In this example the image
was as good a quality as one could ever expect from a
surveillance camera, so there was not much one could
do. It was well illuminated and free from noise, but any
number of people could have been matched with the image!
Nevertheless with a small amount of contrast stretching, a
bilinearly interpolated enlargement of the image was sent to
court. Despite my misgivings this poor quality image proved
its worth because when the defendant was shown the images
he immediately pleaded guilty! While this may be amusing it
is not that surprising. We are very good at recognising even
very poor quality images of ourselves. An image of yourself
at the scene of a crime will also bring forward the emotions
you were feeling at the time and it would be difficult to
suppress and disguise these. If the defendant had been able
to suppress these emotions and had said “That’s not me” the

Figure 1. A good quality surveillance image and its bi-linearly interpolated
enlargement — of any number of possible people.

prosecution would have had trouble arguing its case.
This example then raised a number of questions.

• What image quality do we need for identification?
• How do you measure image quality?
• What is the image quality from a surveillance camera?
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• What is the effect on image quality when you:

– Record to video tape?
– Use image compression?

Humans are actually rather poor at recognizing faces. This
may seem counter-intuitive given that so much of our social
life revolves around recognizing people and interacting with
them on the basis of who we have recognized them to be.
We are only good at recognizing faces that we are familiar
with, such as our own, or of family and friends, and well
known celebrities [20], [5]. The more familiar we are with a
face the better our ability to recognise it in even a very poor
image. However, when it comes to recognizing faces that we
are not familiar with our performance is disturbingly poor.
This has been demonstrated in a number of studies. Kemp,
Towell and Pike [15] tested the value of having photos
on credit cards. They found that when a user presented
a card with a photograph of someone else that had some
resemblance to the user, they were challenged less than 40%
of the time. Bruce et al. [3], [4] tested the ability of people
to match good quality CCTV images of unfamiliar faces
under a variety of scenarios. They found correct recognition
rates are typically only 70-80%. An illustration of one of
their experiments is shown in Figure 2. Here they tested the
ability of observers to match a good quality photo of a target
person against 10 good quality CCTV images of faces. If
the target was present the observer would have to correctly
match the person, alternatively the observer would have to
declare that no CCTV image of the subject was present.
When the target was present in the array, 12% picked the
wrong person and 18% said they were not present (overall
only 70% correct). When the target was not present in the
array 70% still matched the target to someone in the array.

If human face recognition is so poor, what is the state
of automated face recognition? In the Face Recognition
Vendor Test 2002 [10] the one-to-one verification results
of the better performing systems produced a FRR of 0.2
at a FAR of 0.001. The 2002 one-to-many identification
performance results for the better systems were roughly
∼90% for a database of about 100 individuals. This fell
to ∼65-75% for a database of about 37,000 individuals. In
this case the images were US visa application photos taken
with standardized equipment and with white backgrounds,
an ideal a situation as you could ever expect.

The Face Recognition Vendor Test 2006 results were
an order of magnitude improvement [11]. The one-to-one
verification results of the better performing systems, of
faces under controlled lighting, produced a FRR of around
0.01 at a FAR of 0.001. These performances were achieved
with high resolution images with the distance between the
eyes being typically 350 pixels. The performance of some
systems held up very well even on lower resolution images
with around 75 pixels between the eyes. However, for faces
under uncontrolled lighting and with high resolution images,

Figure 2. Example of test conducted by Bruce et al. [3]. Is this person in
the array? If so, match the correct image.

these performances would fall to a FRR of around 0.15 to
0.3. So despite these very impressive achievements there is
still some way to go, especially under uncontrolled lighting
conditions.

The quality of images from surveillance cameras is typi-
cally well below that used in the Vendor Tests. A 768×576
PAL image is only 0.4 megapixels. This image is then
recorded to video tape or heavily compressed and stored
digitally. So then, what image quality is needed for face
identification? Image quality is defined by many attributes,
some of which might include

• Minimum feature size that can be resolved
• Noise level
• Quality of luminance reproduction
• Quality of colour reproduction.

This paper will mainly consider the spatial resolution re-
quirements for face recognition and discuss some aspects of
luminance and colour reproduction.

II. SPATIAL RESOLUTION

A number of studies have looked at the spatial frequencies
that are important for face recognition. Hayes, Morrone
and Burr [14] concluded that the spatial frequencies most



important for face recognition are around 20 cycles per face
width. Costen, Parker and Craw [6] suggested that the range
of 8 to 16 cycles/face width was the most important. More
recently Näsänen [17] concluded that maximum sensitivity is
centred around 8 to 13 cycles/face width and the bandwidth
of the important spatial frequency range is just under two
octaves.

While each study comes to slightly different conclusions
the general outcome is that, for humans, face recognition is
tuned to a set of spatial frequencies ranging from about 20
cycles per face width down to about 5 cycles per face width.
Frequencies higher than this do not significantly improve
recognition performance because they presumably only re-
veal insignificant features such as minor skin blemishes. At
the other end of the scale, frequencies lower than 5 cycles
per face width are perhaps mostly a function of lighting
variations rather than facial features. Obviously to be able to
recognize unfamiliar faces with some confidence one needs
to be able to resolve spatial frequencies towards the upper
end of this range. That is, frequencies greater than about 10
cycles per face width and preferably up to 20 cycles per face
width

Given an average face width of about 160mm these two
frequencies of 10 and 20 cycles/face width correspond to
spatial wavelengths of 16mm and 8mm respectively. These
correspond very nicely with the bar groupings at the top-
right and bottom-right of the USAF chart, as shown in
Figure 4. The 1951 USAF chart specified in MIL-STD-150A
is somewhat dated but it allows one to readily obtain a basic
evaluation of the spatial resolution performance of a camera
system.

The other widely used tool to evaluate spatial resolution
performance in humans is the optometrist’s logMAR chart1

The logMAR chart was devised by Bailey and Lovie [1].
It consists of geometrically scaled lines of lettering in the
Sloan font. The rows of letters on the chart are scaled
logarithmically, each row being scaled 100.1 relative to the
last. This means that the letter height approximately doubles
every third row. The chart is constructed on the basis that
a person with normal sight can resolve 1 minute of arc,
this is the Minimum Angular Resolution (MAR). The chart
is typically designed to be viewed at a distance of 6m (20
feet) so letters at the bottom of the chart with a logMAR
value of 0 are sized to match this at approximately 9mm
high, see Figure 5. This row of the logMAR chart is marked
by the single horizontal line across the bottom of the chart
seen in Figure 6. Subsequent rows of letters above this are
numbered by logMAR values increasing by 0.1 at each line
to a value at the top of 1. The logMAR 0.5 row is marked
by the double horizontal line across the chart. The letters in
this row are 100.5 ≈ 3.16 times larger than the logMAR 0

1Here logMAR stands for ‘logarithm (to base 10) of Minimum Angular
Resolution’, it has nothing to do with the Laplacian of Gaussian and David
Marr!

Figure 3. Spatial frequencies important for human face recognition.

Figure 4. 1951 USAF Chart, composed of groupings of 6 geometrically
scaled pairs of bars. Each successive grouping is half the size of the
previous. The bottom right bars have a spatial wavelength of 16mm, the top
right have a wavelength of 8mm. These encompass the spatial frequency
range important for face recognition

row, about 27mm high.
Visual acuity is also often described in terms of the

Snellen fraction; the ratio of the distance you can read a
specific line of the eye chart to the distance that someone
with normal vision would be able read that line. Thus the
term 20/20 vision (or in metric, 6/6 vision) arises from the
fact that at 20 feet you can read the line on the eye chart
that is legible to someone with normal vision at 20 feet.
If you can only read the line at logMAR 0.3 (letters twice
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Figure 5. A person with normal sight can resolve 1 minute of arc
(logMAR 0). Letters on the 6/6 row of an eye chart will be sized to match
this at just under 9mm high.

the size) your Snellen fraction would be 6/12 (at 6m you
can only read something that should be visible from 12m).
The letters at the top of the chart, which are approximately
90mm high, correspond to a Snellen fraction of 6/60. This
represents 1/10 of normal visual acuity. If you are unable to
read this top row you would be considered to have a ‘severe
visual impairment’ and be legally blind [21]. See Figures 13
and 14.

While the logMAR chart is certainly not the most precise
instrument one would choose to evaluate the performance
of a camera it is useful in that it provides a direct com-
parison with personal experience. It allows one to readily
communicate to non-technical people an important aspect
of the performance of a surveillance system. One can relate
a 6 metre logMAR chart to the USAF chart by noting that
the key spatial frequencies with wavelengths of 8mm and
16mm, corresponding to the top-right and bottom-right bars
of the USAF chart, roughly match the logMAR values of
0.4 and 0.7 respectively. (The 6m logMAR values of 0.4 and
0.7 actually correspond to spatial wavelengths of 8.8mm and
17.4mm respectively.)

III. EXPERIMENTS

In evaluating a surveillance system’s visual acuity we are
not necessarily trying to determine whether it has ‘normal
human vision’. All we want to know is whether it can resolve
the spatial frequencies that are important for face recognition
at the operating distance the camera is working at. To test
this we can image the test charts at the camera’s operating
distance, which might be much less than 6m, and check
whether the appropriate USAF bars or logMAR lines can
be resolved. Nevertheless in the interest of doing a simple
comparison against human vision some basic experiments
were conducted with a Pulnix TM6CN 1/2” CCD camera
positioned 6m from the USAF and logMAR charts. Four
life size face images were also placed alongside the charts.
Using C-mount lenses ranging in focal length from 4mm
to 16mm a variety of images were digitized using a Data
Translation 3155 frame grabber. The results are shown in
Figures 7 to 10.

Naturally due to the size constraints of images in this
paper and variations in image reproduction it is hard to
provide a proper evaluation of these images. However, it is
hoped they provide a useful indication of the general trends.

Figure 6. The logMAR chart, letter heights approximately double in size
every third row.

Figure 7 shows that the image from the 4mm lens is close
to satisfying the definition of being legally blind. The top
row of the logMAR chart is only just legible. Looking at the
USAF chart and also noting that the key spatial frequencies
for face recognition lie between logMAR 0.4 (‘Z V U D N’)
and 0.7 (‘R D F U V’), we can see that only when one uses a
12.5mm lens (Figure 9) do we have sufficient image quality
to recognize a face with some confidence.

The requirement of being able to resolve spatial frequen-
cies of 20 cycles per face width would suggest that a face
should be at least 40 pixels wide in the image for one to
be able to recognize it with some reliability. Figure 9 would
appear to support this view as the heads in this image are
close to this value at about 38 pixels wide. However this
presupposes that there are no other deficiencies in the image
quality. Note that the head widths in Figure 1 and in the two
images shown in Figure 14 are approximately 35 pixels, 30
pixels and 20 pixels respectively.

IV. COMPRESSION

These images presented in Figures 7 to 10 represent
a ‘gold standard’ quality in that they are acquired with
a relatively good quality camera and lenses, and directly
digitized from the camera with a good quality frame grabber.
In practice many systems would employ cheaper cameras
and lenses and the image would be recorded to video tape,
or compressed and stored digitally.



Figure 7. Image using a 4mm lens.

Figure 8. Image using a 8.5mm lens.

Figure 9. Image using a 12.5mm lens.

Figure 10. Image using a 16mm lens.

Figure 11 shows a closeup of the original 12.5mm lens
image (a), a version of the image recorded to video and
replayed and digitized (b), and two compressed versions of
the original image (c) and (d). Inspection of the vertical
and horizontal bars of the USAF chart in the image that
was recorded to video would indicate that while vertical
resolution is mostly unchanged, horizontal resolution is
approximately halved. This would greatly reduce the con-
fidence with which one could identify a face.

However, it is compression that is potentially most prob-
lematic for surveillance images. Often digital surveillance
systems will use quite aggressive compression ratios be-
cause of the amount of image data that has to be stored.
Figures 11(c) and (d) show that while simple test grating
patterns, such as the USAF target used here, survive data
compression quite well, faces can be degraded considerably.

At first sight this is at odds with what has been reported
elsewhere. For example in the FRVT 2006 test it was
reported that the low resolution images were compressed
20:1, yet excellent recognition performance was achieved.
Griffin and Hsu[12] do report a clear degradation of au-
tomated face recognition with compression ratios beyond
20:1. However, below this ratio the effect on performance
is negligible. Delac et al. [7] review the automated face
recognition literature finding numerous studies indicating
that compression ratios up to around 20:1 have little effect.
The FRVT 2000 evaluation report [9] even suggested that
ratios up to 40:1 had little impact.

I argue that these results indicating that compression has
little effect on recognition performance are not relevant to
surveillance images because they relate to images having
much greater resolution. The images in the low resolution
FRVT 2006 test were such that the distance between the
eyes was about 75 pixels. Using an average interpupillary
distance of 63mm [8] and an average head width of 160mm



(a) (b)

(c) (d)

Figure 11. Close up of face images and USAF target recorded with the
12.5mm lens. (a) Original image. (b) Image recorded to video tape, replayed
and digitized. (c) Original image with JPEG compression 18:1. (d) Original
image compressed 31:1.

we can estimate the width of the head to be about 190 pixels.
In the results reported by Griffin and Hsu [12] the distances
between the eyes were 120 pixels, which translate to a head
width of about 305 pixels. In comparison the faces shown
in Figure 11 are approximately 38 pixels wide.

In this case these images are only just short of the Nyquist
limit of providing spatial information at 20 cycles over the
face width. However, the main problem is the interaction
of the 8 × 8 MPEG or JPEG discrete cosine transform
(DCT) blocks with the image. There are approximately 5
of these DCT blocks spanning each face. The compression

Figure 12. Further enlargement of uncompressed and 31:1 compressed
face from figure 11 showing JPEG DCT blocks.

quantization of the frequency components in each of these
blocks means that the spatial frequency information from
5 cycles per face width upwards have been corrupted. This
is precisely the range of spatial frequencies important for
face recognition! The discontinuities introduced at the block
boundaries are especially troublesome. In the limit we have
all the perceptual problems associated with block mask-
ing [13]. This can be seen with the excessive compression
shown in Figure 12. Thus, at the typical resolution of
surveillance images, compression is likely to have a very
significant effect on recognition performance.

In comparison the low resolution FRVT 2006 images,
where the face width was about 190 pixels, would have
been hardly affected by the JPEG DCT blocks. It takes
about 23 8 × 8 blocks to span these faces. Quantization of
frequency components in these blocks will have little impact
on human perception as these are beyond the important range
for recognition. This may well explain the observations
that image compression has little effect on automated face
recognition. In saying this, one must acknowledge that the
spatial frequencies that are important for human recognition
of faces are not necessarily the same as those that are
important for automated recognition systems. However, it
is likely there is a strong relation between the two.

V. LUMINANCE AND COLOUR INFORMATION

While the discussion so far has concentrated on the
spatial frequencies important for face recognition and the
disruption of them by the compression process, luminance
and colour cues are at least as important as shape cues.
O’Toole et al. [18] and Russell et al. [19] demonstrate that
people perform about equally well using either just shape
information, or just pigmentation information to recognise
faces. Referring to Figure 15 one can see that the faces
in the top and middle rows, which differ in only shape or
pigmentation respectively, do not look the same as each other
indicating that both shape and pigmentation are important.



Figure 13. An indoor camera installation and its image. Note the distance
from the camera to the logMAR chart is only 4.8m.

The importance of pigmentation is of concern given that
under MPEG there are the additional quantization issues
introduced by the 16 × 16 motion prediction macroblocks.
While luminance information is encoded within the four
8 × 8 DCT blocks within a macroblock the chrominance
information is typically subsampled by a factor of two and
is thus encoded at the macroblock size. The DCT values
representing chrominance information are also more heavily
quantized than those representing luminance data. This is
illustrated in Figure 16.

VI. CONCLUSIONS

Surveillance cameras, as they are currently used, are
almost useless for the identification of people. The poor
resolution of surveillance images means that it is likely that
many of the spatial frequencies important for face recog-
nition will not be present. In addition, the low resolution
means that compression DCT blocks will interact strongly
with the spatial frequencies important for face recognition.

Figure 14. Images released in relation to the attempted bombings in
London on July 21 2005 [2]. In the top image the letters on the jacket
are about 80-90mm high, assuming the head is 160mm wide. They are
not legible. In the second image the ‘Help Point’ letters on the overhead
sign are larger still, yet only just legible. It might be argued that these
surveillance cameras are legally blind!

outlines of the face and individual features, pictured in
Fig. 9) [68]. With each of these classes of stimuli, subjects
have performed about equally well using either shape or
pigmentation cues. This provides evidence that the two
kinds of cues are used about equally by humans to recognize
faces. A study from our laboratory investigating the use of
these cues for the recognition of familiar faces also found
that shape and pigmentation are about equally important.
An implication of this work is that artificial face recognition
systems would benefit from representing pigmentation as
well as shape cues.

4) Result 10: Color Cues Play a Significant Role Especially
When Shape Cues Are Degraded: The luminance structure of
face images is undoubtedly of great significance for
recognition. Past research has suggested that the use of
these cues may adequately account for face-identification
performance with little remaining need to posit a role for
color information. Furthermore, people tend to accurately
identify faces that are artificially colored [40]. However,
recent evidence [89] counters the notion that color is
unimportant for human face recognition and suggests
instead that when shape cues in images are compromised
(say, by reductions in resolution), the brain relies on color
cues to pinpoint identity. In such circumstances, recogni-
tion performance with color images is significantly better
than with gray-scale images. Precisely how does color
information facilitate face recognition? One possibility is
that color provides diagnostic information. The expression
Bdiagnostic information[ refers to color cues that are spe-
cific to an individual, for instance the particular hue of
their hair or skin that may allow us to identify them. On

the other hand, color might facilitate low-level image
analysis, and thus indirectly aid face recognition. An
example of such a low-level task is image segmentationV
determining where one region ends and the other starts.
As many years of work in computer vision has shown [20],
[29], this task is notoriously difficult and becomes even
more intractable as images are degraded. Color may
facilitate this task by supplementing the luminance-based
cues and thereby lead to a better parsing of a degraded face
image in terms of its constituent regions. Experimental
data favor the second possibility. Recognition performance
with pseudo-colored face images (which do not contain
diagnostic hue information) is just as high as with natural
color images (and both are significantly better than
grayscale images, when shape cues are degraded). Fig. 10
illustrates this idea. The images show the luminance and
color components of sample face inputs. They suggest that
color distributions can supplement luminance information
to allow for a better estimation of the boundaries, shapes,
and sizes of facial attributes such as eyes and hair lines.

Fig. 10. Examples that illustrate how color information may facilitate

some important low-level image analysis tasks such as segmentation.

(a) Hue distribution (right panel) allows for a better estimation

of the shape and size of the eyes than the luminance information

alone (middle panel). Left panel shows the original image. Similarly,

in (b), hue information (right panel) allows for a better segmentation

and estimation of the location and shape of hair line than just

luminance information (middle panel). This facilitation of low-level

analysis happens with other choices of colors as well, such as in

the pseudo-color image shown on the left in (c). Hue distribution

here, as in (b), aids in estimating the position of facial attributes

such as hair line.

Fig. 9. Faces in the bottom row are all images of laser-scanned faces.

They differ fromoneanother in termsofboth shape andpigmentation.

Faces in the middle row differ from one another in terms of their

pigmentation but not their shape, while faces in the top row differ

from one another in terms of their shape but not their pigmentation.

From the fact that the faces in either the top or middle row do not

look the same as each other, it is evident that both shape and

pigmentation cues play a role in facial identity.
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Figure 15. Illustration from Russell et al. [19]. Faces in the bottom row
are images of laser scanned faces differing in both shape and pigmentation.
Faces in the middle row differ only in pigmentation, not shape. Faces in
the top row differ in shape but not pigmentation.



Figure 16. Hue values extracted from the image shown in Figure 1
displayed as greyscale. Where is the person?

Finally, the quantization of colour information introduced
by compression adds a further confounding of our ability
to recognise faces in surveillance images. These conclusion
are illustrated by images from surveillance cameras that
arguably meet the definition of being legally blind.
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